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I. Intreduction

In this report we summarize the results of the research efforts under Grant
NSG-1112 through March 14, 1975. The personnel involved in this project up to
this point are Prof. A.S. Willsky, Prof. N.R. Sandell, Dr. Keh-Ping Dunn, and
graduate student E. Chow. It is anticipated that a second graduate student,

Mr. R. Bueno, will joint the research effort in June 1975 to aid in the simulation
and evaluation program.

The outline of this report is as follows. In the Sections II-VI we describe
the work that has been done so far. Our efforts have been concentrated on the
development of an analytical framework and a computation-simulation package for the
GLR system. This framework will provide the basis for both analytical performance
evaluation and for a simulation program. Both of these efforts will yield infor-
mation on system performance limitations, sensitivity to parameter variations, and
computationally efficient approximations. These issues, which will be considered
in great detail during the remaining portion of the grant period, are described in

Section VII,

II., Sensor and Actuator Jump and Step Failures-Open Loop Case

In the work done so far, we have concentrated on the development of detection
algorithms for the four types of failure models described below. Computer algorithms
have been developed, and the questions of computational simplification and |
performance evaluation are being considered with respect to these four models.
The more complex problem of actuator and sensor gain changes and the question of
failures that take the form of additional process or measurement noise have received

some initial attention and will receive more in the near future (see Section VII).




It is felt that the detection mechanisms for these other failure modes will bear
a resemblance to those for the four that have received the majority of our attention
so far. Thus, the algorithms and performance analyses we have and will carry out for
the basic four models will greatly aid the analyses for these other models.

The four basic failure models we have con;idered are (here x is n~dimensionals
and z is m-dimensional

1. BARctuator Step

k+1) = O(k+1,k)x (k) + wik o : 1
x( ) (k+1,k)x (k) + w(k) + k+1,ev (1)

Z(k) = H(k)x(k) + v(k) : (2)

2., Actuator Jump

x(k+1) = ®{k+l,k)x(k) + w(k) + & (3)

k+1,6v
Z(k) = H(K)x (k) + v(k) (4)

3. Sensor Step

x{k+1) = O(k+l,k)x(k) + w(k) )

Z(k) = H{kYx(k) + vik) + Gk 6U » (6)
4. Sensor Jump

% (k+1) = @(k+l,k5x(k) + wik) (7)

Z(k) = BIOx(K) + () + & v (8)

r

where w{k), V(k) are independent white zero mean Gaussian sequences with

Elw(x)w' (x)} = 0(x) and E{V(X)VK)'} = R(K),



0 k#6 (9)

(10)

0 g™ JI 18
0 k<0

and vV is a constant vector of appropriate demension denoting the “abrupt change".
The variable O has the interpretation as the time of failure.

The motivation for these models is given in the proposal for this research
[1]1 and in reference [2]. Note that the actuator jump model number 2 was consi-
dered in [2]. Note that we could have included a control term in these models.

For example, we could have replaced (1) by

x(ktl) = &(k+1,k)x(k) + Bu(k) + w(k) + Vo, . g (11)

We will consider this in the next section in which we discuss the closed loop case.
Suppose we design a Kalman filter (KF) for 1-4, where we assume that no
failure occurs. The relevant equations are (see [1],{2] for details of the

notation):

R(et1]k+1) = [T - K(k+DHK+D) 10 (k+1, K % (k| X) + K(k+1)Z (k+1) (12)
K(k) = P(k|k-1)H' (VT (k) (13)
P(k+l]|k) = @(k+1,k)P(k|k)O" (k+1,k) + Q(k) (14)
P(k|k) = P(x|k-1) - K(X)H(K)P(k|k-1) (15)
V(k) = HOP(k|k-1)H (k) + R(K) (16)

From studying these models we find that both the residual
Y(k) = Z(k) - H(k)X(k|k=1) and the XF estimate 2(k|x) can be decomposed into two
parts:




- ¥ k) =y, (k) 4+ Y, (k) (17)
"N ~ N
x(x]x) = xl(k}k) + %, (k]x) , (18)
when the variables with subscript 1 denote the residual and state estimate res—

pectively when no failure has occurredand subscript 2 denote the "bias” developed

in the KF due to failure. In addition, we find that in all cases
Yz(k) = G(k,0)V : (19)
A
x2(k]k) = F(k,0)V (20)

where G, F are functions of the system matrices, k, and 0 only.
Now we are ready to apply the GLR method to determine the failure parameters

0 and v. We established two hypotheses:

H no failure has occurred

0

H failure has occurredat 6 <k

1

Then the GLR can be expressed as

21n P(Y(l),... Y(k)lHl' 9=§(k), v=3(k))

(k) =
(21)
P(Y(L) ... Y(k)lHo)
k k
R B . . A ~ -1,. . R
= Zwmv (v - Z[Y(J) - G(H38(KIVKTY (I Y (I -G (3) 0 (x)V (k)]
j=1 j=1

where é(k)‘G(k)érethe MLE of 8,v which maximizes 2(k). We have the decision

rule:

2 (k) (22)

AV
M

0
where £ is some predetermined threshold.




It may be shown that v(k) is an explicit function of 8(k):

VR = ¢ 0ks8 k) d (6 00) (23)
where X
ClkiB) = D6 (3:6)V ()G (3:0) (24)
=1
X -1
a(k;0) = ZG'(j;ew ()Y (3) (25)
j=1

Then g(k) is the value of © < k that maximizes

L(k;€) = d'(k;e)C_l(k;e)d(k;G) (26)

The structural form of the GLR is given by (23)~(26) is the same fqr all

four types of failures. The differences among the four are in the calculations

of the matrices G and F. We now present the derivation of the eguations for these

matrices

1. A step in the state equation

x2(k+1) = ®(k+1,k)x2(k) + Ok+l,9v ’ x2(0) =0 (27)
Zz(k) = H(k)xz(k) _ . (28)
Thus

zz(k) = xz(k) =0 k<8 _ (29)
k-1

x, (k) = d(k,2+1)V k>0 (30)
2=0-1
k

Zz(k) = H(k}®(k,2)v  k>B (31)




where

Filter equation

%, (k[K) = 00k, k-1)% (k-1 x-D) + K(K)2, (k) %(0]0)=0

O(x,k-1) = [I-K(k)H(k) 19 (k, k~1)

We then calculate

Hence

x,(0]0)=0 k<6

k

§2(klk) =::£: Ok, 31K (3)2,(3) gze'

§2(k]k)

F(k;8)

Yz(k)

Yz(k)

it

i

i

j=0

k 5
==:E: Ok, 3)K(5) }E: H(3)8(5,2) v
=0 2=0

k k
= 2 :@tk,jm(jm(j)@(j.z)v
2=0 j=0
= F(k,0)V
0 k<6
= ‘ k k
IZ Z O(k,IIK(IIH(G) O (3, %) k>0
2=0  j=0

Z,(K) = H(K)®(k, k-1) %, (k=1|x~1)

k
E H(k)®(k, )V - H(k)O(k,k-1)F (k~1,0)V k>0

2=0

G(k,9)v

(32)
(33)

(34)

(35)

(36)

(37)

(38)

(39)



0 k<0

G(k;0) = k (40)
H(k) [ E ®(x,3)-%k,k~1)F (k-1;0)] k>0
3=0

2. A jump in the state equation

=& AV
x2(k+1) -(k+1,k)x2(k) + 6k+1,8 (41)
Zz(k) = H(k)xz(k) (42)
The result in ] can easily be extended to this case
Noting that
xz(k) = &(x,0)Vv (43)

and comparing this to (30}, we see that we can obtain the desired equations by

replacing

®(3,%)

o
n[>’jx'
@

with ®(j,8). Hence

0 _ k<0
F(k:0) = ‘ (44)
1 3 0U,3KEIHG) (5,0) k>
j=0
0 ' k<0
G(k:0) = (45)
H(k) [®(k,0)-0(k,k~-1)F(k~1;6)] k>0

We will see that the similarity between these too cases allows us to make some

algorithmic simplifications.




Thus

Thus

3.

A step in the measurement equation

%, (k1) = O (kt1, X)x, (X)

Zz(k) = H(k)xz(k) + Ok,e“

x,(k) =0 vk
0 ) - k<8
v k>0

Filter equations:

§2(k|k) = 00k, k-1)%, (k-1]k-1) + K(K) 2., (k)

22(0]0)=o

k
§E2(k|k) =Z®(k,j>x<j)v
=0

0
F(k;8) = (

k
IZ 0(k,3)K(3)
=6

X

G(k;G) = 1

[I-H(k)®(k,k-1)F(k-1;6)]

x2(0)=0

; %,(0]0)=0

k<0
x>8
k<8
kzﬁ
k<0

k>0

(46)

(47)
(48)

(49)

(50)

(51)

(52)

(53)

(54)
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4, A jump in the measurement equation

xz(k+l) = @(k+l,k)x2(k)' | ' x2(0)=0 - {55)

Zz(k) = H(k)x2(k) + 6k ev , (56)

1

Similar to the case of a jump in the state, we note that Zz(k) =V

for k=0, otherwise Zz(k)=0. Then we have

F(k;e) = 0 k<0
(57)

O(x,8)K(8) k>0

G(k;e) = g 0 k<8
I =6 (58)

l-ntk)fb(k,k—l)F(k-l;e) k>9

Finally, we note that the matrix G is essentially the only quantity that
is needed in the implementation of the GLR detector. The matrix F is of importance
in the implementation of a mechanism for compensation following detection. That is,

the gquantity
x, (k) = F(;8)V (59)

represents the response of the filter to the failure. On the other hand, the

system response to the jump is of the form
x2(k) = L(k;0)v (60)

where we can specify L for the four cases (see below). In this case, after the de-

tection of a failure, one might wish to correct the estimate via the equation
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xnew(klk) = xold(klk) + [L(k;0 (k) ~F(k; 6 (k)) ]V (k) (61)

One can also update the error covariance (to take into account our inaccurancies

in estimating V) by generalizing the result in [2]. We obtain

Py = PixlR) o, + LGB 00) P00 000 7¢7 i 8 (0) L0 B ) -F (ks 80001 (62)

1d

The matrices F and L will also be useful in the considerations of compensating
control action.
A straightforward calculation yields referring to the earlier derivations,

we obtain

Case 1:
0 k<0
L(k;0) = kel (63)
©(k,2+1) k>0
2=0-1
ggse 2:
0 ’ k<0
L(k;0) = (64)
®(k,0) k>0
Cases 3 and 4:
L(k,0) =0 (65)

In the next section we consider the effect of feedback on this analysis.



ITI. The Closed Loop Case
Suppose the dynamics in our model includes a term of the form B(k)u(k), and

suppose we hypothesize a feedback law of the form

u(k) = TR (kK - ~(66)
One can show, in this case, that the filter residuals are unchanged, as the filter
compensates for the effect of the feedback law. Thus, the matrix G is unchénged in
all four cases. However, the matrices F and L are changed, as the effect of the
jump is propagated from the system, throuéh the filter, and back to the system aéain.
The following analysis yields the desired equations in the closed loop case.

Consider the system equation (without failures)

x(k+1) = ®0ctL, k) x(k) + w(k) + B(K)T(X)%(k|k)
Z{k) = H(k)x(k) + v (k)

and the associated filter equations:

F(eHL[K4L) = [I-ROeHD) H(HD) 1[0 (k1K) + B(R)T (00 15 (k) %)

i

+ K(k+1) [H(k+1)x(k+1) + V(k+1)]

i

{ I~k (k+1)H(k+1) 1 [ (k+1,k) +B (k) T (k)]

+

K(k+1)H(k+1)B (k) T(k) } % (k|k)

+

K(k+1) H(k+1) P(k+1,k)x (k) + K(k+L)H(k+1) w(k)+K (k+1)V (k+1)
(67)

Combining the state and filter eqguations:
[x(k+l) ,
2(k+1lk+1)]

O (k+1,k) B{k)T(k)
K(k+1)H(k+1) ®(k+1,k) [I—K(k+l)H(k+l)][@(k+l,k)+B(k)T(k)]+K(k+l)H(k+l)B(k)T(k)}
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x (k) I 0 w (k)
X +
N (68)
x (k] k) K(k+1)H(k+1) | K(k+1) v (k+1)
with the abreviation
X(k+1) = A(k+1,k)X(k) + T(k)wW(k) (69)
Note that X(k) is of dimension 2n.
The four different cases of failure may be modeled as:
1. A step in the state
[ o v ]
X(kH1) = A(KHL K X(K) + T(X) W(k) + | X19x (70)
° ]
2. A jump in the state
v
0k+l,6 X
X(k+1) = A(k+1,k)X(k) + T(k) wk) + (71)
L © 3
3. A step 1in the measurement
. 0
X(k+l) = A(k+1,k)X(k) + I'(k) Ww(k) + (72)
Y
Ok,e m
4. A jump in the measurement
0
X(k+l) = A(k+1,X)X(k) + T(k) W(k) + (73)
AY '
k,9 ' m

where vx is the n dimensional "failure vector" for actuator failures and vm is
the m dimensional "failure vector" for sensor failures. Separating the effect of
failure from noise, we have,

Xz(k+l) = A(k+l,k)X2(k) + I'(k)D ; x2(0)=0 (74)
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where D is any of the four partiotioned "failure vectors". Then

Y, (k) = 2, (%) - 2, (k)
Yy (k) = H(k){(x 01X, (k) = (2(k,k=1) + B(k~1)T(k-1)) [0 I] x2<k—1)} (75)
k~1
where Xz(k) = E A{k,j+1)T(3)D (76)
§=6-1

A
It may be shown that X2(klk) and Yz(k) have the form:
A
X2(klk) = F(k:0)v
Y(k) = G(x;8)v
where dimension of V dependends on the type of failure.

IV, Computational Considerations

We note that in general the GLR detector requires a growing bank of filters
~- i.e. we must check for all values of O from 0 to the present time. For practical
situations, we may restrict ‘attention to "data windows" ~- i.e. at time k we only

check values of O that satisfy

k - M<O<k (77)
We note that this still requires a great deal of computation, as we must store
the last M residuals and must implement at least one matched filter, requiring a
state of dimension (M%l)m (i.e., we must calculate equation (25)).
One possibility, described in the proposal [1], involves the use of the WSSR

technique (see [1] and [3]), in which we merely square and sum the residuals. We
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have since developed a variant of the GLR which requires essentially the same
computational effort as the WSSR and which we feel may prove to be an extremely
useful detection tool. Suppose we assume that V=v_ is known. Then, the GLR

0

reduces to

k
2(k;0) = E (2y(3) - G(j;e)volvv’l(j)c(j;e)uO o (78)
j=0

which is strikingly similar to the WSSR. If further state that at any time we

will consider only

A

B (k) = x~N (79)
we remove the optimization over 6 and further reduce the burden. Note that we may
wish to compute several different L's for different vo's and different models (i.e.
1-4). 1In this way, although we will not directly obtain an estimate of V, we can
obtain failure isolation information, that is not available with the WSSR, with
relatively little computation. We propose to evaluate the usefulness of this
approach, and describe our proposed research in this direction in Section VII,

We note that a major FomputatiOnal simplification occurs if the system of

interest and its associated filter are time-invariant (i.e. the filter is in steady-

state). In this case

G(k;0) = G(k-0)
F(k;0) = F{k~-0)
(80)
L(k;0) = L(k-6)
C(k;0) = C(x-6)
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which eases the computational algorithm for determining the GLR equations and greatly
reduces the necessary on-line storage. It is this case that has been considered in
the computer algorithms described in Section VI.

Finally, we note that the GLR, even if we consider fixing 8 = k-M+1, requires
a filter of dimension Mm. This is basically due to the limited memory mature of the
filter (equation (25)). It may be possible, by considering age~weighted filters,
to greatly reduce this dimension, This question will also be considered in the

future (see Section VII).

V. Othe Failure Models
There are basically four other failure models to be considered.

5. Added Actuator Noise

x(k+1) = @(k+1,K)x(k) + w(k) + E(k)0k+l'e (81)
z(k) = H(k)x(k) + v(k) (82)
Here £ is an additional white noise process.
6. Added Sensor Noise
x(k+1) = ®(k+1,X)Ix(k) + w(k) (83)
z(k) = H(kX)x(k) + v(k) + E(k)O (84)
k,©
7. Change in Actuator Gain
x(k+1) = ¥(k+l,k)x(k) + B(k)u(k) + w(k) + Mu(k)Ok+l 6 {85)

z(k) = H(K)x(k) + v(k) (86)
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8. Change in Sensor Gain
x(k+l) = O(k+l,k)x(k) + w(k) (87)

z(k) = H(X)x(k) + v(k) + Jx(k)Ok (88)

r

0

We note that we can also consider the closed loep case, but, as discussed
in’ Section III, there is no difference if one considers the question of detection
only. Closed loop analysis is needed, however, when one wants to consider the
question of compensation.

We have performed some initial analyses for these models and we briefly discuss
them here. We note first, however, that it is quite possible that the GLR detectors
for models 1-4 will be able to detect the failures represented in models 5-8. We
plan to investigate this possibility, as it will lead to an overall reduction in
detector complexity (see Section VII).

For models 5 and 6, one can shéw that Yz(k) is a zero mean random variable
with precomputable covariance, which ié a function of the covariance of §(k) (the
exact equations will be reported in‘the next report). Note that a crucial point is
that the Yz(k) are not whi%e, and the GLR technique in this case essentially examines
the correlation behavior of the residuals. We also point out that the full GLR
requires the estimation of the covariance of £, which can be accomplished with the
aid of techniques such as those of Mehra [4]. If we hypothesize a fixed value for
this covariance, the required.computations become far simpler.

The sensor gain model #8 leads to a nonlinear estimation-detection problem,

If we assume that J is unknown, we have a nonlinear estimation problem (the product
of J and x causes the problem). If we assume that J is known (e.g., J is all zero

except one row which is the negative of the corresponding row of H-- this is the
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"hard-over" failure model), one obtains

k
Y, (k) = Ze Ax,§:0)x (k) (89)
j:

where the A can be precomputed (the precise eguations will be reported in the next

progress report). In this case, the optimal GLR would require the estimation of x.

It is possible to avoid this if we make an approximation. Rewriting the sensor

eguation, we have

z (k)

It

H(K)x (k) + vik) + Jx(k!k)ok+l'e + J(x(k)—x(k‘k)0k+l’e

H(K)x (k) + vik) + J§(k]k)ck g + Jelk)o

+1, k+i,6

k3 3 * A L3 >
where e is the error in the estimate x(k‘k). AS we can precompute the statistic of

e, our model is of the approximate form

z(k) = HOOx(X) + v(k) + [3x(k]k) + E(X)1o (90)

k+1,0

We have briefly discussed how one can handle the § term in the consideration

“k+1,8

of model 6. The term JQ(k]k)O represents a step failure with the size of the

k+1,6

step modulated by the estimated g, which is known.

The detection of such a phenomenon involves problems similar to those encoun-
tered in model 7 (although model 8 is somewhat easier, as all sensor failure analyses
are slightly more straightforward than the corresponding a;tuator analyses). As we |
have performed some analysis for the actuator model 7, we will concentrate ocur
present discussion on it. Full analyses of these models will be given in the next
report. Consider model 7. Note that the failure in this case is a step jump
modulated by the known inputs u{k). This type of failure is actually an extension

of the failure of model 2 (the actuator jump with v(j) = M(j)u(j), 0-1<j<k) as
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follows:

k
x{k+1l) = O(k+1,k)x(k) + B{Klu(k) + w(k) + E M(Du(3)d

§=0-1

K+1,3+1 (o1)

Using the results we have obtained in Section II and applying superposition prin-

ciple, we have

K -1
x, (k|K) = ZF(k;j+l)M(j)u(j) = Z P (k;J+1)M(5)u(3) (92)
j=6-1 3=8-1
and
K K-1
¥, () = }; Glk;3+1IM(5)u(3) = Z G (ks 3+1)M(3)u (3) (93)
3=0~1 §=0-1

where F(k;3j) and G(k;3) are given by (44) and (45), respectively, and where we
have used the fact that F(k;3)=0 and G{(k;j)=0 when k<j.

We have obtained the expressions for iz(k}k) and Yz(k), but determining the
MLE's of 6 and M(j),-e—lfjfﬁ which maximize 2(k) of (21) is not an easy task.
The control inputs u(k) dependeﬁce complicates the whole derivation. So -far we are
able to obtain an expression for ﬁ(j]@;k) (MLE of M(j) given observations up to
time k and knowing jump‘occurs at time 8) with the following assumptions:

(i) u(k) is a scalar.

(ii) the matrix H'(k)v-l(k)H(k) is invertable for all k.

These assumptions can be relaxed and will be discussed in the next report. Some
discussion on these are also given in Section VII. We will only give some results

on time varying case to demonstrate the complexity of this problem. The complete
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derivations and discussions of this model will be reported in the future. For the
sake of simplicity, let us denote
. -1 -1 . ~1
(k) = [H'(X)V " (Kr(Xk] "[HEKV " (k)] (94)
G(k;8) = H(X)¥Y(k;9) (95)

and therefore

T(K)G(k;0) = Y(k;0) (96)

After a nontrivial derivation, we have

M(k-1]k;k) = 7(R)Y(X) ] ulk-1) (97)
M(k-2]k-1;%) = (k-2 |k-1;k-1) (98)
M(k-1x-1;%) = M(k-1|ksk) - Y (ks k=1) B (k=2 ] k=1 k-1) nlk-2) (99)
u(k-1)
and furthermore
Zk-i (2)
~ . . - X . . . ~ u
M(k—l{k"j;k) = M(k—llk—];k—j) - “P(k—l+l;ﬂ,)h(2—ll2,ﬂ,) m
f=k~3
1 <i<j (100)

Contradicting to our intuition, the time invariant case is not as easy a&s we have

seen. in the other models. ‘Further analyses of failure of this type are undertaken,
N

A neat recursive formula for M(j[@;k), 0-1<j<k~1 and the use of the existing

computer subroutines (see next section) to this problem are also under investigation.

VI. Computer Routines
In preparing the FORTRAN subroutines, we have taken the system to be time
invariant and the KF to be in study state. Hence we have constant system matrices

®, H, K, T. In addition the dependence of G, F, C, on k and O becomes dependence
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on f2£=k-0 only. A list of available subroutine and brief descriptions are as

follows:

A. XGFOL, MGFOL compute and store the G and F matrices for a data window of

width M+l for failures in the state and measurement respectively in the open
loop case. A flag (SJ) determine whether the failure is a step (1.0) or a
jump (0.0). Upon impecting the functional form of F, we find them cumbersome
to evaluate. A simple approach is to use the fact that

F(k+1;6) = OF(k;0) + KG(k+1,6)
Together with the expression for G, we have a pair of recursive expressive
that can be easily implimented on a computer.
The time invariant equations to ba implemented.

1. A step in the state

G(R) = 0 <0
H }9: 27 - er(2-1) 950
j=6
F{2) = OF(2~1) + KG({)
F(0) = KH
G(0) = H
2. A jump in the state
G(R) = {0 2<0
H[@Q - OF(2-1)] >0
F(2) = OF(2-1) + KG(L)
F(0) = KH
G(0) = H
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% . : :
Note that 2:@3 = (... 0(P+I)+I...+1).
3=0

20 g

. , %
If we set all the I's in the equation to 0 we get ¢ . B2Apart from the

v [} ~
e & . : .
difference of ¢ and z QQ in the expression for G(%). The equations

3=0

for 1 and 2 are the same. Hence the flag SJ is used to set I to be the
identity or O matrix.

step in the measurement

3 .

FR) = 3. {[z-xu1e}x 2>0
3=0

G(0)=1

G(L) = [I~-HOF(2~1)} 2>0

jump in the measurement

F(o) = {1T-xm o}t x 2>0
G(0)=I
G(L) = -uHdr(2-1) £>0

Again, we use the same method to obtain one routine for both of the cases.

The I's in the computation of g& [(I-—KH)@]J and G() in the step case
i=1

- can be set to 0 in order to obtain the equations in 4.
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GFCL computes and stores the G & F matrices in the closed loop case, A
flag LTF is used to indicates whether the failure is a jump in the state
(LTF = 1), a step in ﬁhe state (2), a jump in the measurement (3) or a step
in the measurement (4). This routine does not employ the 2n dimensional
expressions for the system X. Instead, it just use the basic eguations of
the state and filter

x, (k+l) = Ox,(x) + Bsz(klk) + D)

§2(k+1tk+1) = 0%(k) + K H[@x(k+1)—(¢+BT)§2(klk)+ D,

where D and D_ are the failures and are never non zero simultaneously. We

1 2

know that
xz(l) = F1L(L)Vv
x2(2) = F(2}V

where V is the failure of appropriate dimension.

Then
F1(f+1) = 9F1(R) + BTF(L) + I,
F(L+1) = OF (L) + KG(R+1) + I,
G(2+1) = H[OF1(A+1) ~ (d+BTIF(R)]

where I., I

1 5 are identity matrices at least one of which is always forced

to zero. For LTF = 1, 12=O, and Il#o only for £=0 indicating a jump in

state; LTF=2, I,=0 and I,=I V4%>0, LTF=3, I.=0, 12;40, only for 2=0; LTF=4,

2 1

I.=0, I.=I V4>0. (Note that in this case F1l corresponds to the matrix L

1 2

defined in Section II). Also the initial conditions for failures in state and

measurement are different state
F1(0)=I
F (0) =KH
G(0)=H
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measurement: F1(0)=0
F(0)=X

G(0)=I.

C. GCINV, GTVINV compute and store

C_l(Q) and G'(SL)V—1 in a very straightforward manner.

C(L+1) = G'(£+1)v'lc(2+1) + C(R) >0

c(o) = a-(0)v tg(0)

GEND, GENLOR computes and store the vectors d(l) and GLR's respectively.

E. STOFCH, MADSUB, MINIT are support subroutine. STOFCH stores a matrix into a

big storage or retrievea matrix from storage, MADSUB adds or subtracts

matrices. MINIT initializes matrices to O or wl when w is a real constant.

The simulation

As an initial attempt to examine the effectiveness of the GLR detection
scheme, we have begun to assemhle a simulation package as outlined in the flow

diagram. Routines have been developed for steps 1,2,3,8, and 9. There are other
computer packages at MIT that can easily be modified to accomplish steps 4,5,6 and
7. Steps 10 and 11 are being worked on. Failure models 1-4 will be examined in
the simulation. It is anticipated fhat, together with the analysis of detection
per formance, the simulation will give useful insights into the practical conside-
rations of the GLR detector implementation such as the data windows width M and

the likelihood ratio threshold €. Models 5-8 will also be included in the

simulation as the analysis is completed.
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Simulation Flow Diagram of GLR detection over a data window: k—Mf_@f_ k

1. Generate 4. Simulation of
G(k-0) models 1-4
F (k-6)
G(k-8) 7 (k)
i
2. Generate 8. Generate
GTVIN (k-0) | g7 - d (k-9)
M ' J_(].{_)..S. Steady Statd
k=8 k-9 KF
= 2.G'(§)HV = D GIVIN(])
j=0 j=0 (3)
, G F,
a(k-6)
éG(k—G) v 6. Steady Stata
a1 KF gain
3. Generate C " (x-8) > 9. Generate computation
Cc ~(k-0) 2(x-9)
v
L 2 (%-8) @ ’
' 10. Compare 7. Cc>mpute1
2(x-0)>¢ v=E{Y (k)Y" (¥}
to determine ~ ReHPH'

3]
P
=il 1. determine
v (6)




VII. Work To Be Done
In this section we describe the gquestions we feel should be considered.
Some of these are being considered and will be considered during the remainder

of this grant period.

1. GLR Development
We plan to complete our development of the GLR equations for the 8 cases
described in the preceding sections. This includes
(a) Completion of the analysis for models 5-8 (Section V). This involves
the consideration of the full GLR problem, and the various simplifi-
cations that one obtains by considering fixed assumed jump sizes and
fixed jump directions (such as changes in single columns of Band rows
of H, corresponding to failures in particular actuators and sensors).
(b) Development of a complete computer package for the computation of the
GLR equations for the various cases for systems of dimension up to 10.
This includes the full GLR equations and the equations for the various
simplifications developed'in (a). We will also include a simulation
Ssection in the overall package. This section will be relatively easy
to assemble, as subroutines developed for other projects at M,I.T.
(including the MMAC work for the F-8 under Grant NSG-1018) can be
directly adapted to the CLR package.
2. BAnalytical Study of Detection Performance
Some initial results presented in [2] indicate that a methodology can be
developed for the calculation of probability PD of cor;ect detection and the

probability PF of false alarm. The probability PF' defined by
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o«

PLOV) =f p(xlﬁl,\))dﬁa

€
can be computed from tables, as £ is a non-central Chi-squared random variable.

We plan to carry this analysis out in detail and to consider the problem for
the other four cases. The purpose of.this study is to obtain data on the tradeoff
- among the wvarious system parameters -- the threshoid €, the window length M+l, and
thé size of the failures that can be detected (i.e. we will examine PD(v) as a
function of V). Another important parameter is the delay time in detection. Let
T be the number of time steps following a failure before it is detected. We can

readily derive the following equations for the distribution of T

P(T=0) = P(2(6,0)>¢) (10o1)

P(T<t) = P(T<t=1) + P(L(8+t,0)>e|T>t) - (102)

Assuming we hypothesize a specific value for the failure, we can compute P(T=0),
and thus the problem reduces to computing the conditional probability in (102).
We plan to investigate the calculation of this quantity.

These probability calculations ;an also be used to obtain useful information
concerning simplifications of the GLR. For example, suppose 21 and»!&2 ére log-

likelihood ratios for two different failure hypotheses. A useful quantity is the

"cross—detection probability™

(e 0]
p12=/ p&, |n,)an,
. £
That is, P12 is the probability that one GLR detector will detect a failure corres-

ponding to a second hypothesis. By examining such probabilities, we hope to obtain

information as to the elimination of certain failure hypotheses which can be
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adequately detected by other detectors. In addition, this analysis will provide
useful information concerning the performance of the computationally simpler fixed
size GLR system.

Much of this analysis cannot be performed in the vacuum of general models,
Therefore, we expect to consider several simple, low order exXamples that capture
the basic properties of problem, Such analysis should provide guidelines for GLR

design for higher order systems,

3. Simulation Studies

We plan to develop a low-order dynamical system which can be used to study
the properties ©f the GLR system. Such a study, combined with the performance ana-
lysis described above, will yield desired information on the performance limitations
of the GLR., The use of one basic model for a variety of tests will provide us with
a common basis for the comparison of the various GLR systems and any approximations
that are developed.

We eventually plan to apply the GLR to the F~8 aircraft (or another aerospace
vehicle, such as the space shuttle or a control-configured vehicle); however, it
is not clear that such a model would be appropriate for these initial tests. The
resolution of the question of the model for these initial tests will be made in

consultation with NASA-Langley personnel,

4, Sensitivity Analysis
We propose to study the effect of parameter errors on GLR performance. Some
initial analysis has been performed indicating that sensitivity equations can be

derived. We intend to pursue this analysis as far as possible. In parallel with
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this study, we will perform a series of simulation runs (using the same simple
model discussed earlier) to obtain numerical data relating to the parameter

sensitivity of GLR performance.

5. Compensation and Reorganization

In Section II we described a possible algorithm for the compensation of the
Kalman Filter following the deteétion of a failure. We propose to develop analogous
methods for the other failure models and to investigate the qualitative behavior
of the overall system (i.e. does this feedback compensation add a destabilizing
feature to the overall system). In addition, we will have to consider compensation
methods for the simplified GLR algorithm which does not provide an estimate of the
size of the failure. One possibility is to utiiize a dual-mode procedure, in which,
following detection by the simplified GLR, we switch to the full GLR for isolation
and compensation. A second possibility is to develop a set of compensation rules

to be'utilized directly after detection by the simplified GLR. Again, these questions

will be studied both via analysis and simulation.

We note that the type of compensation discussed in Section II deals basically
with filter compensation, with system compensation being accomplished only through
the feedback law u=Tx. In many cases (particularly those involving actuator failures)

we will want to take more direct compensatory action. Several ideas are discussed

in the proposal [1]. We propose to study these compensation methods in detail.

6. Computational Simplifications

Several possible computational simplifications have been discussed already.
These include the limited optimization over 8 (avoiding the growing dimensionality
problem), the steady-state algorithm (leading to time-invariant GLR equations), and
the fixed jump size and direction algorithm (eliminating the estimation of the

failure size). As mentioned in Section IV, another possible simplification would
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be to find a lower order approximate realization of the GLR algorithm. For example,

the GLR algorithm for models 1-4 takes the form {in the time~invariant case)

k

a(x;0) = E 6" (3-8)V Ly ()
3=0

The realization problem is to find four matrices A,C,E, and N such that

k-1
ket _ '
d(k;6) =§ : ca’ kEl VY oy )
3=0
The GLR implementation described in Section II-VI provides an exact realization.

However, the limited memory nature of the exact algorithm reguires a high-dimensional

realization. Thus, it seems appropriate to seek lower order approximations to
the exact GLR. In filtering theory, age-weighted filters often behave in a
similar manner to that observed in limited memory filters, Thus, we propose to
consider some type of age-weighted lower-order approximation. We plan to carry
the analysis of suéh approximations as far as possible, both through theoretical

developments and simulation.

7. Several Additional Questions
There are several additional questions that we would like to consider:
(a) The GLR as developed is based on the use of the innovations sequence
Y = z(X) - H(K)X(k|k-1)
Is there any benefit in using the residuals defined by the equation

Y(k) = z(k) - H(K)X(k]k)
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(b) can we develop a GLR_algbrithm for jumps in the transition matrix.
That is, consider the detection of changes in dynamics of the form
x(k+l) = Q(k+1,k)x(k) + wi{k) + Wx(k)6k+l'e
It should be noted that there are several similarities between this
model and models 7 and 8 described in Section V. We alsc note that
detection of changes in ® and B (the actuator gain) can be interpreted
as detection of changes in operating conditions.

{c) The question of system observability must be addressed. The implemen-
tation of the GLR requires the inversion of the matrix C(k;9). If this
inverse does not exist, we are presently using a pseudo-inverse instead.
However, we note that C(k; ) can be interpreted as the information matrix

describing what information about a failure at time 0 is present in the

measurements z(0),..., Z(k). Thus it may be more desirable to use a

different "pseudo~inverse" for C that takes into account our a
priori knowledge about 1likely failure modes and the observability

behavior for each of then.

8. Application of the GLR to an Aerospace Application

We plan to apply the technigues we have developed to problem of the digital
control of an aerospace vehicle (e.g. the F-8 or space éhuttle). We propose to
begin this part of the study by examining several flight conditions in detail in
order to cbtain information on the parameter and detector complexity tradeoffs
for this problem. It is our eventual aim to obtain a design procedure over the
full flight envelope and to consider the effects of the true nonlinear model on
detector performance.

Problems 1-3 are being and will be considered in the near future. Problens
4 and 6 will be considered subsequent to the resolving of some of the questions
in 1-3. Problems 5 and 8 are somewhat more long-range in nature, although

sinulations of the F-8 will be begun in the near future. The cguestions in problem

7 are somewhat peripheral and will be considered as time allows,
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